Verteego Doc
  • Getting started
    • About Verteego
    • Sample Use Cases
    • Concepts
  • Data
    • Introduction
    • Datasources
      • URL connector specification
    • Datasets
  • Pipelines
    • Forecasting Pipelines
      • Getting started
      • Configuration
        • Identifying and preparing data
          • calculated_cols
          • cols_type
          • date_col
          • normalize
          • preprocessing
          • prediction_resolution
        • Configuring the Forecasting Algorithm
          • algo_name
          • algo_type
          • algorithm_parameters
          • fit_parameters
          • conditional_algorithm_parameters
        • Building the Training and Prediction Set
          • column_to_predict
          • features
          • input_prediction_columns
        • Using Hyperparameter Tuning for the Model
          • tuning_search_params
          • hyperparameter_tuning_parameters
        • Evaluating the Results of the Forecast
          • scores
        • Modifying the results of the forecast
          • postprocessing
      • Calculators
        • External source
          • get_from_dataset
          • weather
        • Mathematic
          • aggregate_val_group_by_key
          • binary_operation
          • count_rows_by_keys
          • hierarchical_aggregate
          • mathematical_expression
          • unary_operation
          • Moving Average (EWM)
        • Machine Learning
          • pca
          • clustering
          • glmm_encoder
          • one_hot_encode
          • words_similarity
        • Transformation
          • fillna
          • fill_series
          • case_na
          • interval_index
          • constant
          • cyclic
          • replace
        • Temporal
          • bank_holidays_countdown
          • bankholidays
          • date_attributes
          • date_weight
          • day_count
          • duration
          • events_countdown
          • seasonality
          • tsfresh
    • Optimization Pipelines
      • Getting started
      • Configuration
      • Constraints
        • Unary Constraint
        • Binary Constraint
        • Aggregation Constraint
        • Order Constraint
        • Multiplicative Equality Constraint
        • Generate constraints from a Dataset
  • Apps
    • About Apps
    • Recipes
      • Pipelines
      • Datasets
  • Users
    • User roles
  • Best practices
    • Performance analysis and ML model improvement
  • Developers
    • API
    • Change logs
Powered by GitBook
On this page
  • Description
  • Steps impacted
  • Example
  1. Pipelines
  2. Forecasting Pipelines
  3. Configuration
  4. Identifying and preparing data

prediction_resolution

Description

Lists the columns that determine the granularity of the predictions. This setting defines the level of detail at which the forecast is generated, such as daily, weekly, or monthly forecasts. Understanding and setting the prediction resolution is crucial for aligning the outputs with business needs and operational planning.

Steps impacted

prediction

Example

prediction_resolution:
- receipt_date
- item_id
- pos_id
PreviouspreprocessingNextConfiguring the Forecasting Algorithm

Last updated 1 year ago