Verteego Doc
  • Getting started
    • About Verteego
    • Sample Use Cases
    • Concepts
  • Data
    • Introduction
    • Datasources
      • URL connector specification
    • Datasets
  • Pipelines
    • Forecasting Pipelines
      • Getting started
      • Configuration
        • Identifying and preparing data
          • calculated_cols
          • cols_type
          • date_col
          • normalize
          • preprocessing
          • prediction_resolution
        • Configuring the Forecasting Algorithm
          • algo_name
          • algo_type
          • algorithm_parameters
          • fit_parameters
          • conditional_algorithm_parameters
        • Building the Training and Prediction Set
          • column_to_predict
          • features
          • input_prediction_columns
        • Using Hyperparameter Tuning for the Model
          • tuning_search_params
          • hyperparameter_tuning_parameters
        • Evaluating the Results of the Forecast
          • scores
        • Modifying the results of the forecast
          • postprocessing
      • Calculators
        • External source
          • get_from_dataset
          • weather
        • Mathematic
          • aggregate_val_group_by_key
          • binary_operation
          • count_rows_by_keys
          • hierarchical_aggregate
          • mathematical_expression
          • unary_operation
          • Moving Average (EWM)
        • Machine Learning
          • pca
          • clustering
          • glmm_encoder
          • one_hot_encode
          • words_similarity
        • Transformation
          • fillna
          • fill_series
          • case_na
          • interval_index
          • constant
          • cyclic
          • replace
        • Temporal
          • bank_holidays_countdown
          • bankholidays
          • date_attributes
          • date_weight
          • day_count
          • duration
          • events_countdown
          • seasonality
          • tsfresh
    • Optimization Pipelines
      • Getting started
      • Configuration
      • Constraints
        • Unary Constraint
        • Binary Constraint
        • Aggregation Constraint
        • Order Constraint
        • Multiplicative Equality Constraint
        • Generate constraints from a Dataset
  • Apps
    • About Apps
    • Recipes
      • Pipelines
      • Datasets
  • Users
    • User roles
  • Best practices
    • Performance analysis and ML model improvement
  • Developers
    • API
    • Change logs
Powered by GitBook
On this page
  • Description
  • Options
  • Steps impacted
  • Example
  1. Pipelines
  2. Forecasting Pipelines
  3. Configuration
  4. Configuring the Forecasting Algorithm

algo_name

Description

Specifies the name of the algorithm used for training. Identifying the algorithm by name allows for precise documentation and easier replication of model training processes. This setting is fundamental for tracing model performance back to the algorithmic choices made during setup.

Options

  • arima

  • catboost

  • decisiontree

  • dummy

  • extratrees

  • identity

  • knn

  • lightgm

  • logistic

  • prophet

  • randomforest

  • sarima

  • svm

  • xgboost

Steps impacted

training

Example

date_col: Date_Chargement
algo_type: regression
algo_name: xgboost
algorithm_parameters:
  n_estimators: 150
  max_depth: 4
PreviousConfiguring the Forecasting AlgorithmNextalgo_type

Last updated 1 year ago